Бесконечно большие функции и их связь с


Дата добавления: 2014-11-24 | Просмотров: 1627


<== предыдущая страница | Следующая страница ==>

бесконечно малыми.

Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

ïf(x)ï>M

выполняется при всех х, удовлетворяющих условию

0 < ïx - aï < D

 

Записывается .

Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим:

а если заменить на f(x)<M, то:

Графически приведенные выше случаи можно проиллюстрировать следующим образом:

 

 
 

 


a x a x a x

 

 

Определение. Функция называется бесконечно большойпри х®а, где а – чосли или одна из величин ¥, +¥ или -¥, если , где А – число или одна из величин ¥, +¥ или -¥.

 

Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

 

Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

 

Сравнение бесконечно малых функций.

 

Пусть a(х), b(х) и g(х) – бесконечно малые функции при х ® а. Будем обозначать эти функции a, b и g соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю.

Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x.

 

Определение. Если , то функция a называется бесконечно малой более высокого порядка, чем функция b.

 

Определение. Если , то a и b называются бесконечно малыми одного порядка.

 

Определение. Если то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b.

 

Определение. Бесконечно малая функция a называется бесконечно малой порядка kотносительно бесконечно малой функции b, если предел конечен и отличен от нуля.

 

Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение не имеет предела, то функции несравнимы.

Свойства эквивалентных бесконечно малых.

1) a ~ a,

2) Если a ~ b и b ~ g, то a ~ g,

3) Если a ~ b, то b ~ a,

4) Если a ~ a1 и b ~ b1 и , то и или .

 

Свойство 4 особенно важно на практике, т.к. оно фактически означает, что предел отношения бесконечно малых не меняется при замене их на эквивалентные бесконечно малые. Этот факт дает возможность при нахождении пределов заменять бесконечно малые на эквивалентные им функции, что может сильно упростить вычисление пределов.

 

Пример. Найти предел

Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим:

 

Пример. Найти предел .

Так как 1 – cosx = при х®0, то .

Пример. Найти предел

 

Если a и b - бесконечно малые при х®а, причем b - бесконечно малая более высокого порядка, чем a, то g = a + b - бесконечно малая, эквивалентная a. Это можно доказать следующим равенством .

Тогда говорят, что a - главная частьбесконечно малой функции g.

Некоторые замечательные пределы.

Первый замечательный предел. , где P(x) = a0xn + a1xn-1 +…+an,

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

 

Итого:

 

Второй замечательный предел.

 

Третий замечательный предел.

 

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

 

 

Пример. Вычисление пределов

 

.

Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

 

x2 – 6x + 8 = 0; x2 – 8x + 12 = 0;

D = 36 – 32 = 4; D = 64 – 48 = 16;

x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6;

x2 = (6 – 2)/2 = 2 ; x2 = (8 – 4)/2 = 2;

Тогда

 

домножим числитель и знаменатель дроби на сопряженное выражение: =

= .

 

.

 

Разложим числитель и знаменатель на множители.

x2 – 3x + 2 = (x – 1)(x – 2)

x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3), т.к.

x3 – 6x2 + 11x – 6 x - 1

x3 – x2 x2 – 5x + 6

- 5x2 + 11x

- 5x2 + 5x

6x - 6

6x - 6 0

x2 – 5x + 6 = (x – 2)(x – 3)

Тогда

 

 

Непрерывность функции в точке.

 

Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точкех0, если предел функции и ее значение в этой точке равны, т.е.

 

Тот же факт можно записать иначе:

 

Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

 

Пример непрерывной функции:

y

 

f(x0)+e

f(x0)

f(x0)-e

 

0 x0-D x0 x0+D x

 

Пример разрывной функции:

 

y

 

f(x0)+e

f(x0)

f(x0)-e

x0 x

 

Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

верно неравенство .

Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

 

f(x) = f(x0) + a(x)

где a(х) – бесконечно малая при х®х0.

 

Свойства непрерывных функций.

 

1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.

 

2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.

 

3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.

 

Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.

 

Непрерывность некоторых элементарных функций.

 

 

1) Функция f(x) = C, C = const – непрерывная функция на всей области определения.

2) Рациональная функция непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.

3) Тригонометрические функции непрерывны на своей области определения.

Точки разрыва и их классификация.

 

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел (см. выше) , то функция называется непрерывной справа.

 
 

 

 


х0

 

 

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

 
 

 


х0

 

Определение. Точка х0 называется точкой разрывафункции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

 

Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

 

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимойточкой разрыва, но подробнее об этом поговорим ниже.

 

Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

 

Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г)

не является непрерывной в любой точке х0.

Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к.

.

 

Пример. f(x) =

Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

 

 

График этой функции:

 

 

Пример. f(x) = =

 

y

 

 

 

0 x

 

-1

 

 

Эта функция также обозначается sign(x) – знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1 – го рода. Если доопределить функцию в точке х = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке х = 0 разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой.

 

Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.

 

 

Непрерывность функции на интервале и на отрезке.

 

Определение. Функция f(x) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке интервала (отрезка).

 

При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.

 

Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.

 

 

в точке х = -1 функция непрерывна в точке х = 1 точка разрыва 1 – го рода

 

 

у

 

 

-4 -1 0 1 х

 

 

Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.

 

 

в точке х = 0 функция непрерывна в точке х = 1 точка разрыва 1 – го рода

 
 


у

 

 

 

 

-p -p/2 0 1 x

 

 


1 | 2 | 3 | 4 | 5 | 6 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.049 сек.)