Пример решения задачи 2.2


Дата добавления: 2014-11-24 | Просмотров: 1546


<== предыдущая страница | Следующая страница ==>

Условие. Точка М движется по ободу диска радиусом R=20 см согласно закону s = АМ = 6 t sin(pt/3). Диск вращается вокруг неподвижной оси О1О2, лежащей в плоскости диска, в направлении, указанном стрелкой, с постоянной

угловой скоростью w=0,5 рад/с. Определить абсолютную скорость точки М в момент времени t1=5 с (рис.2 .4).

Рис. 2.4
Решение. В данной задаче относительное движение точки – движение по ободу диска относительной системы отсчета, связанной с диском; переносное движение – вращение вместе с диском вокруг неподвижной оси; абсолютное движение – движение точки относительно неподвижной оси.

Определим параметры относительного движения точки:

а) положение точки М в заданный момент времени t=5 с:

М

Знак минус означает, что точка М в рассматриваемый момент времени находится в области отрицательных значений дуговой координаты s;

б) определим центральный угол a и отрезок MN:

в) найдем проекцию относительной скорости точки М на касательную в данный момент времени (рис. 2.5).

  Рис. 2.5
Определим модуль переносной скорости точки М как вращательной скорости той точки диска, где в данное мгновение находится точка М

.

М
Вектор переносной скорости перпендикулярен плоскости диска и направлен в сторону его вращения.

Модуль абсолютной скорости точки М (рис. 2.5.) найдем по формуле:

Вектор абсолютной скорости направлен по диагонали прямоугольника, построенного на относительной и переносной скоростях как сторонах.

 

Абсолютное ускорение точки М равно (рис. 2.6) геометрической сумме относительного отн , переносного пер и кориолисова кор ускорений: абс = отн + пер + кор , или с учетом условий задачи в развернутом виде абс = отн + отн + пер + кор

где при t1=5с касательное ускорение в относительном движении:

 
отн = ;

нормальное ускорение в относительном движении:

отн = ;

нормальное ускорение в переносном движении:

пер = ;

кориолисово ускорение:

кор = .

Положительный знак отн показывает, что вектор отн направлен в сторону положительных значений S; вектор отн направлен по нормали к траектории движения точки в относительном движении, т.е. по нормали к окружности радиусом MN к её центру, вектор кор направлен согласно правилу векторного произведения векторов и отн (рис. 2.6)

Модуль абсолютного ускорения точки М находим способом проекции на оси х, у и z (рис. 2.6):

абс x = пер+ отн cos - отн sin =13,6 + 4,1cos 24,8 – - sin 24,8 = 5,37 см/с2

абс y = - отн sin - отн cos = 4,1sin 24,8 – 28,5cos24,8 = = -27,6 см/с2 абс z = кор = 6,6 см/с2

абс = см/с2

 

Рис.2.6.

Направление вектора абс определяется его углами с осями координат:

( абс ^, ) = аrс cos = абс cos = 79,3

( абс ^, ) = аrс cos = абс cos = 162,7

( абс ^, ) = аrс cos = абс cos = 76,8

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.048 сек.)