Замечание


Дата добавления: 2014-11-24 | Просмотров: 406


<== предыдущая страница | Следующая страница ==>

Если и , где n – число неизвестных, то система определенна; если , то система неопределенна, если же , то система несовместна.

Метод Гаусса решения СЛАУр состоит в следующем.

 

1. Выписывают расширенную матрицу системы

и с помощью элементарных преобразований приводят ее к трапециевидному виду.

2. Применяя теорему Кронекера – Капелли, исследуют систему, получая один из случаев:

­– система совместна и определенна,

– система совместна и неопределенна,

– система несовместна.

Трапециевидная форма расширенной матрицы С в каждом из этих случаев имеет вид:

 

1) С ~ , ,

следовательно, система определенна, имеет единственное решение,

 

2) С ~ ,

следовательно, система неопределенна, имеет бесконечное множество решений,

 

3) если какая-либо строка матрицы С имеет вид , то система несовместна (решений нет).

 

3. Для решения системы, если оно существует, следует записать новую систему, отвечающую полученной трапециевидной матрице, которая является более простой по сравнению с исходной и решить ее (обратный ход).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.036 сек.)