Условие перпендикулярности двух прямых


Дата добавления: 2014-11-24 | Просмотров: 570


<== предыдущая страница | Следующая страница ==>

Две прямые перпендикулярны в том и только в том случае, когда угол j между ними равен , т.е. .

Координаты точки , делящей отрезок АВ в данном отношении , где , , можно вычислить по формулам

.

В частности, если , то , т.е. М – середина отрезка АВ, то формулы примут вид

.

Если уравнение прямой дано в общей форме: , то расстояние точки до этой прямой находится по формуле:

.

Площадь треугольника с вершинами , можно вычислить по формуле

.

 

Пример

Даны вершины треугольника . Найти:

1) уравнение стороны АВ;

2) уравнение медианы, проведенной из вершины С;

3) координату точки пересечения медиан;

4) уравнение высоты, опущенной из вершины В на сторону АС и ее длину;

5) уравнение прямой, проходящей через точку С параллельно прямой АВ;

6) площадь треугольника.

Решение

1) Используем уравнение прямой, проходящей через две точки . Подставив координаты точек , получим

- общее уравнение прямой АВ, из которого находим уравнение прямой с угловым коэффициентом , .

2) Медиана, проведенная из вершины С делит противолежащую сторону АВ треугольника пополам. Найдем координаты точки Е середины стороны (рис.1):

, т.е. , . Подставим координаты точек в уравнение прямой, проходящей через две точки, получим - общее уравнение прямой СЕ.

3) Точка М делит каждую медиану в отношении , считая от вершины. Таким образом, ее координаты можно найти по формулам:

.

В нашем случае

,

откуда .

4) Найдем уравнение прямой, проходящей через заданную точку перпендикулярно прямой из уравнения . Найдем угловой коэффициент прямой АС, используя уравнение прямой, проходящей через две точки и :

- уравнение АС.

Угловой коэффициент прямой АС равен , тогда, используя условие перпендикулярности двух прямых , получим

- уравнение высоты.

Длину высоты можно найти, как расстояние от точки до прямой АС по формуле . В нашем случае уравнение прямой АС: , следовательно,

.

5) Для нахождения уравнения прямой, проходящей через точку С параллельно прямой АВ используем уравнение прямой, проходящей через заданную точку в заданном направлении и условие параллельности двух прямых. Известно, что угловой коэффициент прямой АВ равен , следовательно,

-

- уравнение искомой прямой.

6) Площадь треугольника находится по формуле: , в нашем случае

.

у А(4;6)

 

 

Е

 

В(-4;0) М

0 1 х

 

С(-1;-4)

Рис. 1


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.038 сек.)