Непрерывность функции


Дата добавления: 2014-11-24 | Просмотров: 1611


<== предыдущая страница | Следующая страница ==>

 

Пусть функция определена в некоторой окрестности точки .

Определение. Функция называется непрерывной в точке , если она имеет предел в точке и этот предел равен – значению функции в точке :

.

Таким образом, для того чтобы функция была непрерывна в точке , необходимо и достаточно выполнение трех условий:

1) функция должна быть определена в точке ;

2) должны существовать пределы функции при как слева, так и справа, т.е. и ;

3) эти пределы должны быть равны между собой и равны значению функции в точке , т.е. .

Если хотя бы одно из этих условий не выполнено, то говорят, что функция имеет разрыв в точке и точку называют точкой разрыва функции .

Точки разрыва следует искать среди точек, не входящих в область определения функции.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.048 сек.)