Краткая теория из курса алгебры


Дата добавления: 2014-11-24 | Просмотров: 470


<== предыдущая страница | Следующая страница ==>

Пусть дана система линейных уравнений (1). Матричный способ решения систем линейных уравнений используется в тех случаях, когда число уравнений равно числу переменных.

 

(1)

Введем обозначения. Пусть А – матрица коэффициентов при переменных, B – вектор свободных членов, X – вектор значений переменных. Тогда X = A-1 × B, где А-1 – матрица, обратная А. Причем обратная матрица А-1 существует, если определитель матрицы А не равен 0. Произведение исходной матрицы А и обратной А-1 должно быть равно единичной матрице:

А-1А=АА-1=Е.

 

Задание: Решить систему линейных уравнений:

Технология работы:

Пусть на диапазоне А11:С13, задана исходная матрица А, составленная из коэффициентов системы. Сначала найдите определитель матрицы А. Для этого в ячейке F15 необходимо выбрать команду Вставить функциюна вкладкеФормулы. В категории "Ссылки и массивы" найдите функцию МОПРЕД(), задайте ее аргумент A11:С13. Получили результат 344. Так как определитель исходной матрицы А не равен 0, т.е. существует обратная ей матрица, поэтому следующим этапом и будет нахождение обратной матрицы. Для этого выделите диапазон А15:С17, где будет размещаться обратная матрица. Вызвав Мастера функций, в категории "Ссылки и массивы" найдите функцию МОБР(), задайте ее аргумент A11:С13 и нажмите Shift+Ctrl+Enter. Чтобы проверить правильность обратной матрицы, умножьте ее на исходную с помощью функции МУМНОЖ(). Вызовите эту функцию, предварительно выделив диапазон А19:А21. В качестве аргументов укажите исходную матрицу А, т.е. диапазон А11:С13 и обратную матрицу, т.е. диапазон А15:С17 и нажмите Shift+Ctrl+Enter. Получили единичную матрицу. Таким образом, обратная матрица найдена верно. Теперь для нахождения результата, выделите для него диапазон F18:F20. Вызовите функцию МУМНОЖ(), используя Мастера функций, укажите два массива-диапазона, которые будете перемножать − обратную матрицу и столбец свободных членов, т.е. А15:С17 и Е11:Е13 и нажмите Shift+Ctrl+Enter. Результат показан на рисунке 10.

Теперь можно произвести проверку правильности найденных решений х1, х2 и х3. Для этого, выполните вычисление каждого уравнения, используя найденные значения х1, х2 и х3. Например, в ячейке G11 подсчитайте значение , при этом результат должен быть равен 3. Введем следующую формулу =A11*$F$18+B11*$F$19+C11*$F$20 .

Скопируйте эту формулу в две ячейки, расположенные ниже, то есть в G12 и G13. Снова получите столбец свободных членов. Таким образом, решение системы линейных уравнений выполнено верно.

 

 

Рисунок 10 - Решение системы линейных уравнений

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.035 сек.)