|
|||||||||||||
Вероятностный подходДата добавления: 2014-11-24 | Просмотров: 1696
Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной .кости, имеющей N граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2,... N. Введем в рассмотрение численную величину, измеряющую неопределенность – энтропию (обозначим ее Н). Величины N и Н связаны между собой некоторой функциональной зависимостью:
а сама функция f является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2,... 6. Рассмотрим процедуру бросания кости более подробно: 1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1; 2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I; 3) обозначим неопределенность данного опыта после его осуществления через H2. За количество информации, которое получено в ходе осуществления опыта, примем разность неопределенностей «до» и «после» опыта:
Очевидно, что в случае, когда получен конкретный результат, имевшаяся неопределенность снята (Н2 = 0), и, таким образом, количество полученной информации совпадает с первоначальной энтропией. Иначе говоря, неопределенность, заключенная в опыте, совпадает с информацией об исходе этого опыта. Заметим, что значение Н2 могло быть и не равным нулю, например, в случае, когда в ходе опыта следующей выпала грань со значением, большим «3». Следующим важным моментом является определение вида функции f в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1,2,.... N) будет равно N в степени М:
Так, в случае двух бросаний кости с шестью гранями имеем: Х = 62 = 36. Фактически каждый исход Х есть некоторая пара (X1, X2), где X1 и X2 – соответственно исходы первого и второго бросаний (общее число таких пар – X). Ситуацию с бросанием М раз кости можно рассматривать как некую сложную систему, состоящуюиз независимых друг от друга подсистем – «однократных бросаний кости». Энтропия такой системы в М раз больше, чем энтропия одной системы (так называемый «принцип аддитивности энтропии»): f(6M) = M ∙ f(6)
Данную формулу можно распространить и на случай любого N:
Прологарифмируем левую и правую части формулы (1.3): ln X = M ∙ ln N, М =ln X/1n M. Подставляем полученное для M значение в формулу (1.4): Обозначив через К положительную константу, получим: f(X) = К ∙ lп Х, или, с учетом (1.1), H=K ∙ ln N. Обычно принимают К = 1 / ln 2. Таким образом
Это – формула Хартли. Важным при введении какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Очевидно, Н будет равно единице при N = 2. Иначе говоря, в качестве единицы принимается количество информации, связанное с проведением опыта, состоящего в получении одного из двух равновероятных исходов (примером такого опыта может служить бросание монеты, при котором возможны два исхода: «орел», «решка»). Такая единица количества информации называется «бит». Все N исходов рассмотренного выше опыта являются равновероятными и поэтому можно считать, что на «долю» каждого исхода приходится одна N-я часть общей неопределенности опыта: (log2 N)1N. При этом вероятность i-го исхода Рi равняется, очевидно, 1/N. Таким образом,
Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опытанеравновероятны (т.е. Рi могут быть различны). Формула (1.6) называетсяформулой Шеннона. |
При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.047 сек.) |