Тема: Кинематика поступательного и вращательного движения


Дата добавления: 2014-11-24 | Просмотров: 1434


| Следующая страница ==>

Задача №1. Стальной вал (рис. 1) диаметром d = 60мм и длиной l=180мм подвергается обточке резцом. Определить наибольшие напряжения кручения и угол закручивания вала, если усилие резания при точении Р = 4800н.

 

Рис. 1

 

Задача №2. Стальная втулка с диаметрами D = 50 мм и d = 30 мм подвергается обточке по наружной поверхности (рис. 2). Для удобства обточки втулка жестко посажена на оправку с небольшой конусностью. Определить наибольшие напряжения кручения в сечении оправки, если усилие резания Р = 488 Н. Конусностью оправки пренебречь.

 

Рис.2

 

Задача №3. Лодочный мотор передает мощность N= 18 кВт при угловой скорости ώ = 30 рад/сек (286 мин-1). Определить наиболь­шие напряжения кручения в сечении вала гребного винта, если диаметр вала d = 40 мм.

 

 

Задача №4. Нa шпиндель сверлильного станка подается мощность N=4,2 кВт при угловой скорости ώ = 100 рад/сек (955 мин-1). Определить наибольшие напряжения кручения в сечении шпинделя, если его диаметр d = 35 мм.

 

 

Задача №5. Резцовой державкой револьверной головки производят обточку изделия диаметром d1 = 60 мм (рис. 3). Опреде­лить наибольшие напряжения кручения в сечении I-I скалки державки, если усилие резания Р = 4600 Н.

Рис. 3


Задача №6. Стальной полый вал передает мощность N = 60 кВт при угловой скорости ώ = 35 рад/сек (334 мин-1). Определить напряжения кручения на наружной и внутренней поверхностях вала, если наружный диаметр вала d= 80 мм, а внутренний d0=60 мм.

 

Расчет на прочность.

 

Задача № 1. Муфта (рис. 4) соединяет две части вала диаметром d=60 мм в единый. Она передает момент М= 7кНм. Проверить прочность тела муфты, если допускаемое напряжение [τк]=25 МПа. Отношение диаметров муфты c= =0,5; ослабление тела муфты шпоночным пазом в расчет не принимать.

 

Рис. 4

 

 

Задача № 2. Вал передает мощность N=15 кВт при угловой скорости ώ = 80 рад/сек (765 мин-1). Проверить прочность вала, если его диаметр d=35 мм и допускаемое напряжение [τк]=25 МПа.

 

Задача №3. В процессе резания дисковым резцом (рис. 5) его оправка подвергается скручиванию. Определить диаметр оправки резца, если диаметр диска резца D=50 мм, усилие резания Р=8400 Н и допускаемое напряжение на кручение [τк]=50 МПа.

рис. 5

 

Ответ: d=27,8 мм.

 

Задача №4. Определить диаметр вала паровой турбины, развивающей мощность N=150000 кВт при угловой скорости ώ = 314 рад/сек (3000 мин-1), если допускаемое напряжение [τк]=40 МПа. Чему равен угол закручивания вала, если длина его l= 6,5 м?

 


Задача №5. Расточка цилиндра производится с помощью однорезцовой борштанги (рис. 6). Определить диаметр борштанги и ее угол закручивания, если усилие резания Р=6800 Н и допускаемое напряжение [τк]= 40 МПа.

Рис. 6

 

 

Задача №6. Стальной вал должен передавать мощность N=170 кВт при угловой скорости ώ = 70 рад/сек (670 мин-1). Определить диаметр вала из условия прочности и условия жесткости, если [τк]= 42 МПа и [Θ]= 0,40.

 

 

Тема: Кинематика поступательного и вращательного движения

Тема: Кинематика поступательного и вращательного движения
На рисунке представлены графики зависимости скорости четырех тел, движущихся прямолинейно, от времени.

Наибольшее перемещение за совершено телом …

   
     
     
     

Решение:
Перемещение тела совпадает по величине с расстоянием, пройденным телом за определенный промежуток времени, при движении по прямолинейной траектории без изменения направления движения и . В данном случае интеграл вычислять не требуется, достаточно иметь в виду геометрический смысл интеграла. Наибольшее перемещение за совершено телом 3.

Тема: Кинематика поступательного и вращательного движения
Тело движется с постоянной по величине скоростью по траектории, изображенной на рисунке:

Для величин полного ускорения а тела в точках А и В справедливо соотношение …

   
     
     
     

Решение:
Величина полного ускорения определяется соотношением , где и тангенциальное и нормальное ускорения соответственно, причем , , где R – радиус кривизны траектории. Так как по условию скорость по величине постоянна, то тангенциальное ускорение всюду равно нулю. В то же время величина нормального ускорения в точке А больше, чем в точке В, поскольку радиус кривизны траектории в точке А меньше, чем в точке В, что видно из рисунка. Таким образом, величина полного ускорения в точке А больше, чем в точке В.

Тема: Кинематика поступательного и вращательного движения
Диск катится равномерно по горизонтальной поверхности со скоростью без проскальзывания. Вектор скорости точки А, лежащей на ободе диска, ориентирован в направлении …

 

   
     
     
     

 

Решение:
Качение однородного кругового цилиндра (диска) по плоскости является плоским движением. Плоское движение можно представить как совокупность двух движений: поступательного, происходящего со скоростью центра масс, и вращательного вокруг оси, проходящей через этот центр. Тогда . Поскольку диск катится без проскальзывания, скорость точки диска, соприкасающейся с поверхностью, равна нулю. Отсюда следует, что . Вектор направлен по касательной к окружности в рассматриваемой точке (для точки А – в направлении 2). Тогда вектор скорости точки А ориентирован в направлении 3.

Тема: Кинематика поступательного и вращательного движения
Точка М движется по спирали с равномерно возрастающей скоростью в направлении, указанном стрелкой. При этом величина нормального ускорения точки …

    увеличивается
      уменьшается
      не изменяется
      равна нулю

Решение:
Величина нормального ускорения определяется соотношением , где R – радиус кривизны траектории. По условию скорость возрастает, и в то же время кривизны траектории уменьшается, что видно из рисунка. Следовательно, величина нормального ускорения точки увеличивается.

Тема: Кинематика поступательного и вращательного движения
Точка М движется по спирали с равномерно убывающей скоростью в направлении, указанном стрелкой. При этом величина тангенциального ускорения точки …

 

    не изменяется
      увеличивается
      уменьшается
      равна нулю

 

Решение:
Величина тангенциального ускорения определяется соотношением . Так как по условию скорость убывает равномерно, величина тангенциального ускорения остается постоянной.

 

Тема: Кинематика поступательного и вращательного движения
Точка М движется по спирали с равномерно убывающей скоростью в направлении, указанном стрелкой. При этом величина полного ускорения точки …

 

    уменьшается
      увеличивается
      не изменяется
      равна нулю

 

Решение:
Величина полного ускорения определяется соотношением , где и тангенциальное и нормальное ускорения соответственно, причем , , где R – радиус кривизны траектории. Так как по условию скорость убывает равномерно, величина тангенциального ускорения остается постоянной. В то же время величина нормального ускорения уменьшается, поскольку при этом радиус кривизны траектории увеличивается, что видно из рисунка. Таким образом, полное ускорение точки уменьшается.

Тема: Кинематика поступательного и вращательного движения
Частица из состояния покоя начала двигаться по дуге окружности радиуса с угловой скоростью, модуль которой изменяется с течением времени по закону . Отношение нормального ускорения к тангенциальному через 2 секунды равно …

 

   
     
     
     

 

Решение:
Нормальное ускорение частицы равно , где R – радиус кривизны траектории. Тангенциальное ускорение определяется выражением . Следовательно, отношение нормального ускорения к тангенциальному через 2 с равно .

Тема: Кинематика поступательного и вращательного движения
На рисунке представлен график зависимости угловой скорости вращающегося тела от времени. Угловое ускорение тела (в ) в промежутке времени равно…

 

   
     
     
     

 

Решение:
Из приведенного графика следует, что вращательное движение тела является равноускоренным. Поэтому угловое ускорение равно .

Тема: Кинематика поступательного и вращательного движения
Диск равномерно вращается вокруг вертикальной оси в направлении, указанном на рисунке белой стрелкой. В некоторый момент времени к ободу диска была приложена сила, направленная по касательной.

При этом правильно изображает направление углового ускорения диска вектор …

 

   
     
     
     

 

Решение:
По определению угловое ускорение тела , где – его угловая скорость. При вращении вокруг неподвижной оси векторы и коллинеарны, причем направлены в одну и ту же сторону, если вращение ускоренное, и в противоположные стороны, если вращение замедленное. Направление вектора связано с направлением вращения тела правилом правого винта. В данном случае вектор ориентирован в направлении 4, и, так как после приложения силы движение становится ускоренным, вектор ориентирован в направлении 4.

Тема: Кинематика поступательного и вращательного движения
Диск равномерно вращается вокруг вертикальной оси в направлении, указанном на рисунке белой стрелкой. В некоторый момент времени к ободу диска была приложена сила, направленная по касательной.

До остановки диска правильно изображает направление угловой скорости вектор …

 

   
     
     
     

 

Решение:
Направление вектора угловой скорости связано с направлением вращения тела правилом правого винта. В данном случае вектор ориентирован в направлении 4. После приложения силы движение становится замедленным.

Тема: Кинематика поступательного и вращательного движения
Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем, как показано на графике.

Угловое перемещение (в радианах) в промежутке времени от 4 с до 8 с равно …

 

   
     
     
     

 

Решение:
По определению . Отсюда и . Используя геометрический смысл интеграла, искомый угол поворота можно найти как площадь двух треугольников. При этом нужно учесть, что, во-первых, в момент времени происходит изменение направления вращения тела на противоположное, и, во-вторых, площади треугольников равны. Поэтому угловое перемещение тела за рассматриваемый промежуток времени равно нулю.

Тема: Кинематика поступательного и вращательного движения
Диск вращается вокруг своей оси, изменяя проекцию угловой скорости так, как показано на рисунке. Вектор угловой скорости и вектор углового ускорения направлены в одну сторону в интервалы времени …

    от 0 до и от до
      от 0 до и от до
      от до и от до
      от 0 до и от до

Решение:
По определению угловое ускорение тела , где – его угловая скорость. При вращении вокруг неподвижной оси векторы и коллинеарны, причем направлены в одну и ту же сторону, если вращение ускоренное, и в противоположные стороны, если вращение замедленное. Направление вектора связано с направлением вращения тела правилом правого винта. В интервале времени от 0 до вектор угловой скорости направлен вдоль оси OZ и, поскольку скорость увеличивается, вектор углового ускорения направлен так же. В интервале времени от до вектор угловой скорости направлен против оси OZ, но скорость при этом также увеличивается, следовательно, вектор углового ускорения сонаправлен с вектором угловой скорости.


Тема: Кинематика поступательного и вращательного движения
Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем, как показано на графике:

Через 11 с тело окажется повернутым относительно начального положения на угол _______

 

   
     
     
     

 

Решение:
По определению . Отсюда и . Используя геометрический смысл интеграла, искомый угол можно найти как площадь трапеции. Через 4 с после начала вращения тело повернется на угол еще через 7 с – на угол но в обратном направлении. Следовательно, через 11 с тело повернется на угол

Тема: Кинематика поступательного и вращательного движения
Диск радиуса R вращается с уменьшающейся по величине угловой скоростью вокруг вертикальной оси против часовой стрелки. Укажите направление вектора углового ускорения.

 

   
     
     
     

 

Решение:
При ускоренном вращении ( ) вектор углового ускорения сонаправлен с вектором угловой скорости; при замедленном вращении ( ) вектор углового ускорения направлен противоположно вектору угловой скорости. Направление вектора угловой скорости связано с направлением вращения правилом правого винта. Таким образом, вектор ориентирован в направлении 5, вектор – в направлении 6.


Тема: Динамика поступательного движения
Автомобиль поднимается в гору по участку дуги с постоянной по величине скоростью.

Равнодействующая всех сил, действующих на автомобиль, ориентирована в направлении …

 

 
3 |

 

Решение:
Согласно второму закону Ньютона , где – равнодействующая всех сил, действующих на тело, – его ускорение. Вектор ускорения удобно разложить на две составляющие: . Тангенциальное ускорение направлено по касательной к траектории в данной точке и характеризует быстроту изменения модуля скорости; нормальное ускорение направлено по нормали к траектории в данной точке (направление 3) и характеризует быстроту изменения направления скорости. При движении по криволинейной траектории 0, при движении с постоянной по величине скоростью 0. Следовательно, вектор ориентирован в направлении 3. В этом же направлении ориентирован и вектор .

Тема: Динамика поступательного движения
Импульс тела изменился под действием кратковременного удара и стал равным , как показано на рисунке:

В момент удара сила действовала в направлении …

 

 
2 |

 

Решение:
Согласно второму закону Ньютона, . Следовательно, вектор силы направлен так же, как разность импульсов , то есть в направлении 2.

Тема: Динамика поступательного движения
Материальная точка движется под действием силы, изменяющейся по закону . В момент времени проекция импульса (в ) на ось ОХ равна …

 

 
20 |

 

Решение:
Согласно второму закону Ньютона, скорость изменения импульса материальной точки равна действующей на нее силе: . В проекции на ось ОХ . Отсюда, следовательно, .

Тема: Динамика поступательного движения
Тело массой движется с коэффициентом трения 0,5 по наклонной плоскости, расположенной под углом к горизонту. Сила трения (в ) равна …

 

 
5 |

 

Решение:
На тело, движущееся по наклонной плоскости, действует сила трения

Тема: Динамика поступательного движения
Механическая система состоит из трех частиц, массы которых , , . Первая частица находится в точке с координатами (2, 3, 0), вторая – в точке (2, 0, 1), третья – в точке (1, 1, 0) (координаты даны в сантиметрах). Тогда – координата центра масс (в см) – равна …

 

 
1 |

 

Решение:
Центром масс системы материальных точек называется точка С, радиус-вектор которой определяется соотношением .Тогда

Тема: Динамика поступательного движения
Импульс материальной точки изменяется по закону (кг·м/с). Модуль силы (в Н), действующей на точку в момент времени t = 1 c,
равен …

 

 
5 |

 

Решение:
Согласно второму закону Ньютона скорость изменения импульса материальной точки равна действующей на нее силе: . Тогда зависимость силы от времени имеет вид . Модуль силы , и в момент времени t = 1 c

Тема: Динамика поступательного движения
Материальная точка движется под действием силы, изменяющейся по закону . В момент времени проекция импульса (в ) на ось ОХ равна …

 

 
20 |

 

Решение:
Согласно второму закону Ньютона, скорость изменения импульса материальной точки равна действующей на нее силе: . В проекции на ось ОХ . Отсюда, следовательно, .

Тема: Динамика поступательного движения
Импульс материальной точки изменяется по закону: . Модуль силы (в Н), действующей на точку в момент времени , равен …

 

   
     
     
     


Решение:
Согласно второму закону Ньютона, скорость изменения импульса материальной точки равна действующей на нее силе: . Тогда зависимость силы от времени имеет вид: . Модуль силы , и в момент времени модуль силы равен .

Тема: Динамика поступательного движения
Тело массой движется равномерно по вогнутому мосту со скоростью . В нижней точке сила давления тела на мост вдвое превосходит силу тяжести. Радиус кривизны моста (в ) равен …

 

 
10 |

 

Решение:
Согласно второму закону Ньютона в нижней точке моста, или . Следовательно, и

 

Тема: Динамика поступательного движения
Вдоль оси OX навстречу друг другу движутся две частицы с массами m1 = 4 г и m2 = 2 г и скоростями V1 = 5 м/с и V2 = 4 м/ссоответственно. Проекция скорости центра масс на ось ОХ (в единицах СИ) равна …

 

 
2 |

 

Решение:
Скорость центра масс механической системы равна отношению импульса системы к ее массе: . Для рассматриваемой системы из двух частиц . Проекция скорости центра масс на ось ОХ

 

Тема: Динамика поступательного движения
Система состоит из трех материальных точек массами и которые движутся так, как показано на рисунке.

Если скорости шаров равны то вектор скорости центра масс этой системы ориентирован …

 

    в положительном направлении оси OX
      в отрицательном направлении оси OX
      в положительном направлении оси OY
      в отрицательном направлении оси OY

Решение:
Скорость центра масс механической системы равна отношению импульса системы к ее массе: . Для рассматриваемой системы из трех частиц . Проекция скорости центра масс на ось ОХ , так как . Проекция скорости центра масс на ось ОY равна , так как . Поэтому вектор скорости центра масс этой системы ориентирован в положительном направлении оси OX.

Тема: Динамика поступательного движения
Под действием постоянной силы в скорость тела изменялась с течением времени, как показано на графике:

Масса тела (в ) равна …

 

 
10 |

 

Решение:
Из второго закона Ньютона , где а – модуль ускорения, который можно найти из графика зависимости : Тогда

Тема: Динамика поступательного движения
На рисунке приведен график зависимости скорости тела от времени t.

Если масса тела 1,5 кг, то изменение импульса тела (в единицах СИ) за первые 4 с движения равно …

 

   
     
     
     

 

Решение:
Изменение импульса равно: . Изменение скорости в указанном временном интервале найдено из графика.

 

Тема: Динамика поступательного движения
На рисунке приведен график зависимости скорости тела от времени t.

Если масса тела равна 2 кг, то изменение импульса тела (в единицах СИ) за 2 с равно …

 

 
2 |

 

Решение:
Изменение импульса равно: кг·м/с. Изменение скорости найдено из графика.

Тема: Динамика поступательного движения
На рисунке приведен график зависимости скорости тела от времени t.

Масса тела 20 кг. Сила (в H), действующая на тело, равна …

 

   
     
     
     

 

Решение:
Из второго закона Ньютона , где а – модуль ускорения, который можно найти из графика зависимости : Тогда

Тема: Динамика поступательного движения
Мальчик тянет санки массой m по горизонтальной поверхности с ускорением , при этом веревка натягивается силой под углом к горизонту. Если коэффициент трения полозьев о поверхность равен , то уравнение движения санок в проекции на направление движения санок имеет вид …

 

   
     
     
     

 

Решение:
Уравнение второго закона Ньютона в векторном виде имеет вид: , где – векторная сумма всех сил, действующих на тело. Для данной задачи это уравнение запишется следующим образом: , где и – сила реакции опоры и сила трения скольжения соответственно. Если ось OX направить по направлению движения, а ось OY – перпендикулярно ему, то уравнение второго закона Ньютона в проекциях на оси выбранной системы координат примет вид: , . Выразив из второго уравнения и подставив полученное выражение в первое уравнение, получим .

Тема: Динамика вращательного движения
Диск вращается вокруг неподвижной оси с постоянной угловой скоростью. Зависимость момента импульса диска от времени представлена на рисунке линией …

 

    Е
      A
      B
      C
      D

 

Решение:
Момент импульса тела относительно неподвижной оси равен: , где – момент инерции тела относительно оси вращения, – угловая скорость. По условию диск вращается вокруг неподвижной оси с постоянной угловой скоростью. Тогда , то есть для момента импульса диска имеет место зависимость от времени, отражаемая линией Е.

Тема: Динамика вращательного движения
Диск вращается вокруг неподвижной оси с постоянной угловой скоростью. В некоторый момент времени на диск начинает действовать не изменяющийся со временем тормозящий момент. Зависимость момента импульса диска от времени, начиная с этого момента, представлена на рисунке линией …

 

    D
      A
      B
      C
      E

 

Решение:
Момент импульса тела относительно неподвижной оси равен: , где – момент инерции тела относительно оси вращения, – угловая скорость. Так как по условию на диск, вращающийся с постоянной угловой скоростью, начинает действовать не изменяющийся со временем тормозящий момент, зависимость угловой скорости от времени имеет вид , где – угловое ускорение. Поскольку тормозящий момент не зависит от времени, то и const. Тогда , то есть для момента импульса диска имеет место зависимость от времени, отражаемая линией D.

Тема: Динамика вращательного движения
Диск может вращаться вокруг оси, перпендикулярной плоскости диска и проходящей через его центр. В точке А прикладывают одну из сил ( , , или ), лежащих в плоскости диска. Не создает вращающего момента относительно рассматриваемой оси сила …


   
     
     
     

 

Решение:
При вращении тела вокруг неподвижной оси момент относительно этой оси создает только одна составляющая действующей на него силы, а именно касательная к траектории точки ее приложения . Тогда момент силы относительно неподвижной оси равен: , где r – радиус-вектор точки приложения силы. В данном случае только для силы . Поэтому .

Тема: Динамика вращательного движения
К точке, лежащей на внешней поверхности диска, прикладывают четыре силы , , и , лежащих в плоскости диска. Если ось вращения проходит через центр О диска и перпендикулярна плоскости рисунка, то длина отрезка a является плечом силы …

 

   
     
     
     

 

Решение:
Плечо силы – это длина перпендикуляра, опущенного из точки О на линию действия силы. Из рисунка следует, что длина отрезка a является плечом силы .

Тема: Динамика вращательного движения
Если ось вращения тонкостенного кругового цилиндра перенести из центра масс на образующую (рис.), то момент инерции относительно новой оси _____ раза.


    увеличится в 2
      уменьшится в 2
      увеличится в 1,5
      уменьшится в 1,5

 

Решение:
Момент инерции тонкостенного кругового цилиндра массы m и радиуса R относительно оси, проходящей через центр масс, вычисляется по формуле . Момент инерции относительно оси, проходящей через образующую, найдем по теореме Штейнера: . Тогда , то есть момент инерции увеличится в 2 раза.

Тема: Динамика вращательного движения
Рассматриваются три тела: диск, тонкостенный цилиндр (труба) и шар; причем массы m и радиусы R оснований диска и трубы и радиус шара одинаковы.

Для моментов инерции рассматриваемых тел относительно указанных осей верным является соотношение …

   
     
     
     

Решение:
Момент инерции сплошного однородного кругового цилиндра (диска) массы m и радиуса R относительно его оси вычисляется по формуле ; момент инерции тонкостенного кругового цилиндра (трубы) массы m и радиуса R относительно его оси – по формуле ; момент инерции шара массы m и радиуса R относительно оси, проходящей через его центр, – по формуле . В данном случае для шара ось вращения не проходит через его центр. Используя теорему Штейнера, можно найти момент инерции шара относительно указанной оси: . Поэтому правильным для моментов инерции рассматриваемых тел относительно указанных осей является соотношение .

Тема: Динамика вращательного движения
Рассматриваются три тела: диск, тонкостенная труба и сплошной шар; причем массы mи радиусы R шара и оснований диска и трубы одинаковы.

Верным для моментов инерции рассматриваемых тел относительно указанных осей является соотношение …

 

   
     
     
     

 

Решение:
Момент инерции сплошного однородного кругового цилиндра (диска) массы m и радиуса R относительно его оси . Момент инерции диска относительно указанной оси вычисляется с использованием теоремы Штейнера: . Момент инерции тонкостенного кругового цилиндра массы m и радиуса R относительно его оси , момент инерции шара массыm и радиуса R . Таким образом, правильным соотношением для моментов инерции рассматриваемых тел относительно указанных осей является соотношение .

Тема: Динамика вращательного движения
Тонкостенный цилиндр массы m и радиуса R вращается под действием постоянного момента сил вокруг оси, проходящей через центр масс цилиндра и перпендикулярной плоскости его основания. Если ось вращения перенести параллельно на край цилиндра, то (при неизменном моменте сил) его угловое ускорение

 

    уменьшится в 2 раза
      уменьшится в 1,5 раза
      увеличится в 2 раза
      увеличится в 1,5 раза

 

Решение:
Момент инерции при неизменных материале, форме и размерах тела зависит от расположения оси вращения. Момент инерции тонкостенного кругового цилиндра массы m и радиуса R относительно его оси . При переносе оси момент инерции тела изменится. В соответствии с теоремой Штейнера . Согласно основному уравнению динамики вращательного движения твердого тела относительно неподвижной оси, угловое ускорение равно: . Отсюда при неизменном моменте сил, действующих на тело, угловое ускорение цилиндра уменьшится в два раза.

Тема: Динамика вращательного движения

Диск радиусом 1 м, способный свободно вращаться вокруг горизонтальной оси, проходящей через точку О перпендикулярно плоскости рисунка, отклонили от вертикали на угол и отпустили. В начальный момент времени угловое ускорение диска равно _______

 

   
     
     
     

 

Решение:

Момент силы тяжести относительно оси, проходящей через точку О, равен , где радиус диска и плечо силы. Момент инерции диска относительно оси, проходящей через центр тяжести (точку С), равен ; а момент инерции обруча относительно оси, проходящей через точку О, найдем по теореме Штейнера: . Используя основной закон динамики вращательного движения твердого тела вокруг неподвижной оси, можем определить угловое ускорение: .

Тема: Динамика вращательного движения
Величина момента импульса тела изменяется с течением времени по закону (в единицах СИ). Если в момент времени угловое ускорение составляет , то момент инерции тела (в ) равен …

 


1 | 2 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.045 сек.)