|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Термодинамические процессыДата добавления: 2014-05-20 | Просмотров: 1842
Изохорный процесс, процесс, протекающий при постоянном объеме. Уравнение процесса v = const. Основные формулы для расчета изохорного процесса с идеальным газом:
![]() ![]() ![]() ![]() ![]() ![]()
Изобарный процесс, процесс, протекающий при постоянном давлении. Уравнение процесса р = const. Основные формулы для расчета изобарного процесса с идеальным газом:
Изотермический процесс, процесс, протекающий при постоянной температуре. Уравнение процесса Т = const. Основные формулы для расчета изотермического процесса с идеальным газом:
q = 0; s = const;
Качественные особенности реальных газов. Исследования свойств реальных газов в широком диапазоне термодинамических параметров показали, что свойства таких газов отклоняются от законов, справедливых для идеальных газов, тем значительнее, чем выше их плотность. Молекулы реальных газов в отличие от идеальных газов имеют определенные (конечные) размеры, и между ними существуют силы межмолекулярного взаимодействия. При определенных условиях эти силы могут приводить к ассоциации или диссоциации молекул, что существенно отражается на свойствах газа. При малых межмолекулярных расстояниях внутренние силы могут действовать как силы отталкивания и создавать внутреннее давление. При значительных расстояниях между молекулами действуют главным образом силы взаимного притяжения. В связи с этим поведение термических и калорических свойств реальных газов значительно отличаются от идеальных. Например, коэффициент сжимаемости В отличие от теплоемкости идеальных газов теплоемкости ср и cv реальных газов зависят не только от температуры, но и от давления. Эти зависимости имеют сложный характер. В области низких давлений зависимости изохорной и изобарной теплоемкостей от температуры близки к линейным. При давлениях ниже критического теплоемкости ср и cv возрастают с понижением температуры и приближением к состоянию сжижения, что связано с процессом ассоциации молекул. В области высоких температур влияние температуры оказывается незначительным. Повышение давления в этой области приводит к увеличению теплоемкости. В области сверхкритических давлений изобары теплоемкости проходят через максимум, который с повышением давления смещается в сторону высоких температур. Величина ср (или cv)в точке максимума увеличивается с приближением к ркр (рис. 8.7, б). В критической точке изобарная теплоемкость равна бесконечности. Уравнение состояния реальных газов. Для реальных газов предложено много уравнений состояния, но ни одно из них не обладает достаточной общностью и точностью. Физические особенности реальных газов качественно хорошо отражаются уравнением Ван-дер-Ваальса. Оно же является и наиболее простым, единым для жидкой и газовой фаз, термическим уравнением состояния. Ван-дер-Ваальс учел влияние сил взаимодействия молекул и влияние их объема путем введения поправочных факторов в уравнение состояния идеального газа. Это уравнение, полученное на основе, главным образом, умозрительных качественных заключений имеет вид Гетерогенная система, система, состоящая из различных по своим свойствам частей, разграниченных поверхностями раздела (лед-вода, вода-пар). Гомогенная система, система, между любыми частями которой нет поверхностей раздела (пар, вода, лед). Фаза, гомогенная часть гетерогенной системы, ограниченная поверхностью раздела. Фазовый переход, переход вещества из одного фазового состояния в другое. Парообразование, переход вещества из жидкого состояния в газообразное (пар). Испарение, парообразование, происходящее только на свободной поверхности жидкости при любой температуре. Кипение, парообразование, происходящее во всем объеме жидкости в результате подвода теплоты при температуре кипения. Конденсация, переход вещества из газообразного состояния в жидкое в результате отвода теплоты при температуре кипения. Сублимация, переход вещества из твердого состояния в газообразное в результате подвода теплоты при температуре сублимации. Для воды этот процесс возможен при давлениях ниже давления в тройной точке (< 610,8 Па). Процесс перехода вещества из газообразного состояния в твердое, называют десублимацией. Плавление, переход вещества из твердого состояния в жидкое в результате подвода теплоты при температуре плавления. Процесс перехода вещества из жидкого состояния в твердое, называют затвердеванием (кристаллизацией). Температура фазового перехода, температура вещества в процессе равновесного фазового перехода при постоянном давлении. Температура кипения (насыщения), температура вещества в процессе равновесного фазового перехода из жидкого состояния в газообразное (пар) при постоянном давлении. Обозначают tн или ts. При этой же температуре происходит конденсация. Теплота фазового перехода, количество теплоты, которое необходимо подвести или отвести при равновесном изобарно-изотермическом переходе вещества из одной фазы в другую. Теплота парообразования (удельная), теплота, затраченная на превращение 1 кг кипящей жидкости в сухой насыщенный пар при постоянном давлении. Обозначают r, Дж/кг. Тройная точка, точка на термодинамической диаграмме, соответствующая состоянию, в котором находятся в равновесии три фазы вещества: твердая, жидкая, газообразная. Параметры состояния в тройной точке у различных веществ различны. Для воды: р0 = 610,8 Па, t0 = 0,01 оС, v0 = 0,001 м3/кг. Критическая точка, точка на термодинамической диаграмме, в которой исчезает различие между жидкой и газообразной фазами. Состояние вещества в этом случае называют критическим состоянием. Параметры состояния в критической точке у различных веществ различны. Для воды: рк = 22,115 МПа, tк = 374,12 оС, vк = 3,147 м3/кг. Насыщенный пар, пар, находящийся в равновесии с жидкой фазой. Сухой насыщенный пар, пар, в котором при температуре кипения (насыщения) отсутствуют взвешенные частицы жидкой фазы. Влажный насыщенный пар, насыщенный пар, в котором содержатся взвешенные частицы жидкой фазы. Степень сухости пара, массовая доля сухого пара во влажном насыщенном паре. Обозначают х. Степень сухости может изменяться от 0 до 1. При х = 0 – кипящая жидкость, при х = 1 - сухой насыщенный пар. Перегретый пар, пар, температура которого выше температуры кипения при одинаковом давлении.
Основные параметры воды, параметры, необходимые для проведения термодинамических расчетов: давление, температура, удельный объем, энтальпия, энтропия. Поскольку вода является реальным веществом, сведения о параметрах и функциях состояния получают экспериментальным путем, а затем представляют в виде таблиц, диаграмм (Ts-, hs-диаграммы) и уравнений состояния. Начало отсчета энтальпии и энтропии воды - состояние в тройной точке (h0 = 0, s0 = 0). Параметры, относящиеся к состоянию кипящей жидкости, обозначают индексом «'», например, v', h', s'. Параметры, относящиеся к состоянию сухого насыщенного пара, обозначают индексом «"», например, v", h", s". Параметры влажного насыщенного пара определяют с помощью фазовых диаграмм, или рассчитывают по правилу аддитивности: v = v"x + v'(1 – x), h = h"x + h'(1 – x) = h' + rx, s = s"x + s'(1 – x) = s' + rx/Tн. При невысоких и средних давлениях (до 10 МПа), функции состояния можно определять расчетным путем (с достаточной для технических расчетов точностью). Необходимые формулы представлены в таблице, где cрж » 4,19 кДж/(кг×К) – изобарная теплоемкость жидкой воды; cрп - средняя изобарная теплоемкость перегретого пара в интервале температур от температуры кипения до данной температуры. Таблица – Расчет функций состояния воды
Процесс получения пара, процесс 1-2-3-4, представленный на рисунке и протекающий с подводом теплоты. В технических устройствах этот процесс рассматривают как изобарный, состоящий из трех частей: 1-2 - изобарный подогрев воды до температуры кипения; 2-3 - изобарно-изотермическое парообразование; 3-4 - изобарный перегрев пара. Обратный процесс (4-3-2-1) протекает с отводом теплоты и заключается в изобарном охлаждении перегретого пара до температуры кипения (4-3), изобарно-изотермической конденсации (3-2) и изобарном охлаждении жидкости ниже температуры кипения (2-1). Термодинамические процессы с водяным паром, изохорный, изобарный, изотермический и адиабатный процесс.
Изохорный процесс. Процесс 1-2 – подвод теплоты. Работа изменения объема: l = 0. Располагаемая работа: lp = v(p1 – p2).
Количество теплоты: q = Du = Dh + lp = (h2 – h1) + lp. Изобарный процесс. Процесс 1-2 – подвод теплоты. Работа изменения объема: l = p(v2 – v1). Располагаемая работа: lp = 0. Количество теплоты: q = Dh = h2 – h1 = Du + l.
Изотермический процесс. 1-2 – подвод теплоты. Работа изменения объема: l = q – Du. Располагаемая работа: lp = q – Dh. Количество теплоты: q = T(s2 – s1) = Du + l = Dh + lp. Изменение внутренней энергии: Du = (h2 – h1) – (p2v2 – p1v1).
Адиабатный процесс. Процесс 1-2 – расширение. Работа изменения объема: l = -Du. Располагаемая работа: lp = -Dh = h1 – h2. Количество теплоты: q = 0. Изменение внутренней энергии: Du = (h2 – h1) – (p2v2 – p1v1). Уравнение Клапейрона-Клаузиуса, уравнение, устанавливающее связь между величинами, характеризующими процесс перехода вещества из одного агрегатного состояния в другое. Так для процесса парообразования (конденсации) уравнение Клапейрона-Клаузиуса имеет вид:
|
При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.044 сек.) |