Замена переменной в неопределённом интеграле (интегрирование подстановкой).


Дата добавления: 2014-11-24 | Просмотров: 446


<== предыдущая страница | Следующая страница ==>

Пусть .

Тогда . Здесь t(x) – дифференцируемая монотонная функция.

При решении задач замену переменной можно выполнить двумя способами.

1. Если в подынтегральной функции удаётся сразу заметить оба сомножителя, и f(t(x)), и , то замена переменной осуществляется подведением множителя под знак дифференциала: , и задача сводится к вычислению интеграла . Например, (задача сведена к вычислению , где t = cos x) (аналогично находится интеграл от ); (задача сведена к вычислению , где t = sin x) .

2. Замену переменной можно осуществлять формальным сведением подынтегрального выражения к новой переменной.

Пример 1.

Имеет смысл перейти к переменной (сделать подстановку) t = sin x. Выражаем все множители подынтегрального выражения через переменную t:

в результате:

(возвращаемся к исходной переменной)

.

Пример 2. .

Подынтегральная функция содержит два множителя, ни один из которых не является производной другого, поэтому подводить их под знак дифференциала бесполезно. Попытаемся ввести новую переменную, такую, чтобы корни извлеклись:

=

Пример 3. (интеграл №19 из табл.).

Здесь подынтегральная функция состоит из единственного множителя; можно опять попытаться сделать такую замену переменной, чтобы корень извлёкся. Структура подкоренного выражения подсказывает эту замену: (или , ):
.

Интеграл свёлся к интегралу от квадрата косинуса. При интегрировании чётных степеней синуса и косинуса часто применяются формулы, выражающие и через косинус двойного угла: .

Поэтому
.

Пример 4.

dx= = dt= dt= +С=


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.032 сек.)