Вычисление определителей 2-го и 3-го порядка


Дата добавления: 2014-11-24 | Просмотров: 1675


<== предыдущая страница | Следующая страница ==>

 

Определитель 2-го порядка вычисляется по определению:

 

.

 

Пример 1

 

 

Для вычисления определителя 3-го порядка можно воспользоваться следующими правилами:

 

Правило Саррюса: дописать справа к элементам определителя сначала 1-й столбец, затем 2-й (можно внизу дописать первую и вторую строки), (рис.1), произведение элементов, стоящих на главной диагонали определителя, а также произведения элементов, стоящих на двух параллелях к ней, содержащих по 3 элемента – нужно взять со знаком «плюс», а произведение элементов побочной диагонали и двух параллелях к ней, содержащих по 3 элемента – нужно взять со знаком «минус» (рис. 1). Сумма этих шести произведений дает определитель 3-го порядка, соответствующий матрице А.

 

,

- - - + + +

Рис. 1

Пример 2

Вычислить .

Решение

,

– – – + + +

таким образом:

 

Правило треугольника:одно из трех слагаемых, со знаком «плюс» есть произведение элементов главной диагонали определителя, каждое из двух других – произведение элементов, лежащих на параллели к этой диагонали, и элемента из противоположного угла определителя, слагаемые со знаком «минус» строятся так же, но относительно побочной диагонали (рис.2).

 

(+) (-)

Рис. 2

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.049 сек.)