Метод интегрирования по частям


Дата добавления: 2014-11-24 | Просмотров: 443


<== предыдущая страница | Следующая страница ==>

 

Пусть дан интеграл вида , где - непрерывно дифференцируемые функции. Справедлива формула интегрирования по частям

.

Таким образом, вычисление интеграла приводится к вычислению интеграла , который может оказаться более простым или табличным.

Пусть - многочлен степени n. Методом интегрирования по частям можно вычислить, например, интегралы вида:

 

1 группа: 2 группа:

 

Пример

Найти интеграл .

Решение

Положим , найдем , . Так как достаточно взять одну из первообразных, то принимаем . Применим формулу интегрирования по частям

.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.035 сек.)