Пример 3


Дата добавления: 2014-11-24 | Просмотров: 469


<== предыдущая страница | Следующая страница ==>

.

Замечание. Из рассмотренных примеров видно, что предел частного двух многочленов при равен отношению коэффициентов при старших членах, если степени многочленов, стоящих в числителе и знаменателе, равны; равен нулю, если степень числителя меньше степени знаменателя; равен ¥, если степень числителя больше степени знаменателя.

3.2. Раскрытие неопределенности вида

Рассмотрим отношение функций . Пусть – бесконечно малые функции (б.м.ф.) при , отношение в этом случае называется неопределенным выражением вида .

Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо в числителе и знаменателе выделить критический множитель и сократить на него.

Чтобы раскрыть неопределенность вида , в которой числитель или знаменатель содержит иррациональность, следует избавиться от иррациональности, домножив числитель и знаменатель на сопряженное выражение.

 

Пример

Вычислить предел .

Решение

При числитель и знаменатель дроби стремится к нулю, т.е. имеет место неопределенность вида . Для раскрытия неопределенности числитель и знаменатель дроби умножим на сопряженное знаменателю выражение, т.е. на сумму , а квадратный трехчлен разложим на множители, найдя для этого его корни:

,

тогда,

.

Таким образом, получим:

.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.066 сек.)