|
|||||
Вычисление площадей с помощью определенного интегралаДата добавления: 2014-11-24 | Просмотров: 1605
Пусть функция определена и непрерывная на отрезке и пусть, для определенности, Разобьем отрезок на n частей произвольным образом точками деления: . Выберем на каждом частичном промежутке произвольным образом точки . Обозначим Составим сумму , которая называется интегральной суммой для функции на отрезке . Обозначим длину наибольшего частичного промежутка через Перейдем к пределу при .
Если существует конечный предел , не зависящий от способа разбиения отрезка на частичные и выбора на них точек , то он и называется определенным интегралом от функции на отрезке и обозначается Если – любая первообразная для функции , то справедлива формула Ньютона – Лейбница: , т.е. для вычисления определенного интеграла от непрерывной функции нужно составить разность значений произвольной ее первообразной для верхнего и нижнего пределов интегрирования.
|
При использовании материала ссылка на сайт Конспекта.Нет обязательна! (0.048 сек.) |